Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.

Identifieur interne : 003282 ( Main/Exploration ); précédent : 003281; suivant : 003283

Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.

Auteurs : Mohamed A. Ibrahim [Finlande] ; Maarit M Enp ; Viivi Hassinen ; Sari Kontunen-Soppela ; Lukás Malec ; Matti Rousi ; Liisa Pietik Inen ; Arja Tervahauta ; Sirpa K Renlampi ; Jarmo K. Holopainen ; Elina J. Oksanen

Source :

RBID : pubmed:20181662

Descripteurs français

English descriptors

Abstract

Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.

DOI: 10.1093/jxb/erq034
PubMed: 20181662
PubMed Central: PMC2852659


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.</title>
<author>
<name sortKey="Ibrahim, Mohamed A" sort="Ibrahim, Mohamed A" uniqKey="Ibrahim M" first="Mohamed A" last="Ibrahim">Mohamed A. Ibrahim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland. Mohamed.Ibrahim@uef.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio</wicri:regionArea>
<wicri:noRegion>FI-70211 Kuopio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="M Enp, Maarit" sort="M Enp, Maarit" uniqKey="M Enp M" first="Maarit" last="M Enp">Maarit M Enp</name>
</author>
<author>
<name sortKey="Hassinen, Viivi" sort="Hassinen, Viivi" uniqKey="Hassinen V" first="Viivi" last="Hassinen">Viivi Hassinen</name>
</author>
<author>
<name sortKey="Kontunen Soppela, Sari" sort="Kontunen Soppela, Sari" uniqKey="Kontunen Soppela S" first="Sari" last="Kontunen-Soppela">Sari Kontunen-Soppela</name>
</author>
<author>
<name sortKey="Malec, Lukas" sort="Malec, Lukas" uniqKey="Malec L" first="Lukás" last="Malec">Lukás Malec</name>
</author>
<author>
<name sortKey="Rousi, Matti" sort="Rousi, Matti" uniqKey="Rousi M" first="Matti" last="Rousi">Matti Rousi</name>
</author>
<author>
<name sortKey="Pietik Inen, Liisa" sort="Pietik Inen, Liisa" uniqKey="Pietik Inen L" first="Liisa" last="Pietik Inen">Liisa Pietik Inen</name>
</author>
<author>
<name sortKey="Tervahauta, Arja" sort="Tervahauta, Arja" uniqKey="Tervahauta A" first="Arja" last="Tervahauta">Arja Tervahauta</name>
</author>
<author>
<name sortKey="K Renlampi, Sirpa" sort="K Renlampi, Sirpa" uniqKey="K Renlampi S" first="Sirpa" last="K Renlampi">Sirpa K Renlampi</name>
</author>
<author>
<name sortKey="Holopainen, Jarmo K" sort="Holopainen, Jarmo K" uniqKey="Holopainen J" first="Jarmo K" last="Holopainen">Jarmo K. Holopainen</name>
</author>
<author>
<name sortKey="Oksanen, Elina J" sort="Oksanen, Elina J" uniqKey="Oksanen E" first="Elina J" last="Oksanen">Elina J. Oksanen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20181662</idno>
<idno type="pmid">20181662</idno>
<idno type="doi">10.1093/jxb/erq034</idno>
<idno type="pmc">PMC2852659</idno>
<idno type="wicri:Area/Main/Corpus">003290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003290</idno>
<idno type="wicri:Area/Main/Curation">003290</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003290</idno>
<idno type="wicri:Area/Main/Exploration">003290</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.</title>
<author>
<name sortKey="Ibrahim, Mohamed A" sort="Ibrahim, Mohamed A" uniqKey="Ibrahim M" first="Mohamed A" last="Ibrahim">Mohamed A. Ibrahim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland. Mohamed.Ibrahim@uef.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio</wicri:regionArea>
<wicri:noRegion>FI-70211 Kuopio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="M Enp, Maarit" sort="M Enp, Maarit" uniqKey="M Enp M" first="Maarit" last="M Enp">Maarit M Enp</name>
</author>
<author>
<name sortKey="Hassinen, Viivi" sort="Hassinen, Viivi" uniqKey="Hassinen V" first="Viivi" last="Hassinen">Viivi Hassinen</name>
</author>
<author>
<name sortKey="Kontunen Soppela, Sari" sort="Kontunen Soppela, Sari" uniqKey="Kontunen Soppela S" first="Sari" last="Kontunen-Soppela">Sari Kontunen-Soppela</name>
</author>
<author>
<name sortKey="Malec, Lukas" sort="Malec, Lukas" uniqKey="Malec L" first="Lukás" last="Malec">Lukás Malec</name>
</author>
<author>
<name sortKey="Rousi, Matti" sort="Rousi, Matti" uniqKey="Rousi M" first="Matti" last="Rousi">Matti Rousi</name>
</author>
<author>
<name sortKey="Pietik Inen, Liisa" sort="Pietik Inen, Liisa" uniqKey="Pietik Inen L" first="Liisa" last="Pietik Inen">Liisa Pietik Inen</name>
</author>
<author>
<name sortKey="Tervahauta, Arja" sort="Tervahauta, Arja" uniqKey="Tervahauta A" first="Arja" last="Tervahauta">Arja Tervahauta</name>
</author>
<author>
<name sortKey="K Renlampi, Sirpa" sort="K Renlampi, Sirpa" uniqKey="K Renlampi S" first="Sirpa" last="K Renlampi">Sirpa K Renlampi</name>
</author>
<author>
<name sortKey="Holopainen, Jarmo K" sort="Holopainen, Jarmo K" uniqKey="Holopainen J" first="Jarmo K" last="Holopainen">Jarmo K. Holopainen</name>
</author>
<author>
<name sortKey="Oksanen, Elina J" sort="Oksanen, Elina J" uniqKey="Oksanen E" first="Elina J" last="Oksanen">Elina J. Oksanen</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkenes (metabolism)</term>
<term>Betula (genetics)</term>
<term>Betula (metabolism)</term>
<term>Butadienes (metabolism)</term>
<term>Gas Chromatography-Mass Spectrometry (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Monoterpenes (metabolism)</term>
<term>Pentanes (metabolism)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Sesquiterpenes (metabolism)</term>
<term>Temperature (MeSH)</term>
<term>Terpenes (metabolism)</term>
<term>Volatile Organic Compounds (metabolism)</term>
<term>Volatilization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcènes (métabolisme)</term>
<term>Betula (génétique)</term>
<term>Betula (métabolisme)</term>
<term>Butadiènes (métabolisme)</term>
<term>Chromatographie gazeuse-spectrométrie de masse (MeSH)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Monoterpènes (métabolisme)</term>
<term>Pentanes (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Sesquiterpènes (métabolisme)</term>
<term>Température (MeSH)</term>
<term>Terpènes (métabolisme)</term>
<term>Volatilisation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkenes</term>
<term>Butadienes</term>
<term>Hemiterpenes</term>
<term>Monoterpenes</term>
<term>Pentanes</term>
<term>Sesquiterpenes</term>
<term>Terpenes</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Betula</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Betula</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betula</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcènes</term>
<term>Betula</term>
<term>Butadiènes</term>
<term>Composés organiques volatils</term>
<term>Hémiterpènes</term>
<term>Monoterpènes</term>
<term>Pentanes</term>
<term>Populus</term>
<term>Sesquiterpènes</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gas Chromatography-Mass Spectrometry</term>
<term>Polymerase Chain Reaction</term>
<term>Temperature</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie gazeuse-spectrométrie de masse</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Température</term>
<term>Volatilisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20181662</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.</ArticleTitle>
<Pagination>
<MedlinePgn>1583-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erq034</ELocationID>
<Abstract>
<AbstractText>Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ibrahim</LastName>
<ForeName>Mohamed A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland. Mohamed.Ibrahim@uef.fi</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mäenpää</LastName>
<ForeName>Maarit</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hassinen</LastName>
<ForeName>Viivi</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kontunen-Soppela</LastName>
<ForeName>Sari</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Malec</LastName>
<ForeName>Lukás</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rousi</LastName>
<ForeName>Matti</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pietikäinen</LastName>
<ForeName>Liisa</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tervahauta</LastName>
<ForeName>Arja</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kärenlampi</LastName>
<ForeName>Sirpa</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holopainen</LastName>
<ForeName>Jarmo K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oksanen</LastName>
<ForeName>Elina J</ForeName>
<Initials>EJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C509530">4,8-dimethylnona-1,3,7-triene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000475">Alkenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039821">Monoterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012717">Sesquiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>502-61-4</RegistryNumber>
<NameOfSubstance UI="C062672">alpha-farnesene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000475" MajorTopicYN="N">Alkenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008401" MajorTopicYN="N">Gas Chromatography-Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039821" MajorTopicYN="N">Monoterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012717" MajorTopicYN="N">Sesquiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20181662</ArticleId>
<ArticleId IdType="pii">erq034</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erq034</ArticleId>
<ArticleId IdType="pmc">PMC2852659</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2001 Mar 29;410(6828):577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Apr;9(4):180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 May;32(5):542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Apr;32(4):845-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16718573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Sep 1;414(1):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(3):565-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19434804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):174-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Dec;19(14):917-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Jun;59(11):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Sep;10(9):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11427737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Sep 1;366(Pt 2):573-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Feb;138(2):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Jun;24(6):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7640522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(2):346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Jul;66(13):1540-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15949824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Apr;10(4):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):144-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14660801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Sep;31(9):1969-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Apr;31(4):575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2514-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Nov;9(11):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Sep;29(9):1163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2007 Apr;33(4):683-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17333375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(1):27-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19422541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1296-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Aug;14(9):2851-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16029483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(7):e2832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Mar;9(2):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16865657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1984-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22901-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Sep;48(9):1254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17711876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):8-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 Mar 1;41(5):1545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17396639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Jan;67(1):34-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16310233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5257-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hassinen, Viivi" sort="Hassinen, Viivi" uniqKey="Hassinen V" first="Viivi" last="Hassinen">Viivi Hassinen</name>
<name sortKey="Holopainen, Jarmo K" sort="Holopainen, Jarmo K" uniqKey="Holopainen J" first="Jarmo K" last="Holopainen">Jarmo K. Holopainen</name>
<name sortKey="K Renlampi, Sirpa" sort="K Renlampi, Sirpa" uniqKey="K Renlampi S" first="Sirpa" last="K Renlampi">Sirpa K Renlampi</name>
<name sortKey="Kontunen Soppela, Sari" sort="Kontunen Soppela, Sari" uniqKey="Kontunen Soppela S" first="Sari" last="Kontunen-Soppela">Sari Kontunen-Soppela</name>
<name sortKey="M Enp, Maarit" sort="M Enp, Maarit" uniqKey="M Enp M" first="Maarit" last="M Enp">Maarit M Enp</name>
<name sortKey="Malec, Lukas" sort="Malec, Lukas" uniqKey="Malec L" first="Lukás" last="Malec">Lukás Malec</name>
<name sortKey="Oksanen, Elina J" sort="Oksanen, Elina J" uniqKey="Oksanen E" first="Elina J" last="Oksanen">Elina J. Oksanen</name>
<name sortKey="Pietik Inen, Liisa" sort="Pietik Inen, Liisa" uniqKey="Pietik Inen L" first="Liisa" last="Pietik Inen">Liisa Pietik Inen</name>
<name sortKey="Rousi, Matti" sort="Rousi, Matti" uniqKey="Rousi M" first="Matti" last="Rousi">Matti Rousi</name>
<name sortKey="Tervahauta, Arja" sort="Tervahauta, Arja" uniqKey="Tervahauta A" first="Arja" last="Tervahauta">Arja Tervahauta</name>
</noCountry>
<country name="Finlande">
<noRegion>
<name sortKey="Ibrahim, Mohamed A" sort="Ibrahim, Mohamed A" uniqKey="Ibrahim M" first="Mohamed A" last="Ibrahim">Mohamed A. Ibrahim</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003282 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003282 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20181662
   |texte=   Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20181662" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020